bin_search()和lower_bound()对比测试
bin_search()和lower_bound()对比测试

bin_search()和lower_bound()对比测试


#include<bits/stdc++.h>
using namespace std;
#define MAX 100 //试试10000000
#define MIN -100
int a[MAX]; //大数组a[MAX]应定义为全局
unsigned long ulrand(){ //生成一个大随机数
return (
(((unsigned long)rand()<<24) & 0xFF000000ul) //左移位>>4,数字进1位(十六进制
| (((unsigned long)rand()<<12) & 0x00FFF000ul)
| (((unsigned long)rand() ) & 0x00000FFFul)
);
}
int bin_search(int *a, int n, int x){ //a[0]~a[n-1]是有序的
int left = 0, right = n; //不是 n-1
while (left < right) {
int mid = left+(right-left)/2; //int mid = (left+ right)>>1;
if (a[mid] >= x) right = mid;
else left = mid + 1;
}
return left; //特殊情况:如果最后的a[n-1] < key,left = n
}
int main(){
int n = MAX;
srand(time(0)); //时间作为随机种子,time(0)返回从1997-1-1到现在的秒数
while(1){
for(int i=0; i< n; i++) //产生[MIN, MAX]内的随机数,有正有负
a[i] = ulrand() % (MAX-MIN + 1) + MIN; //返回的大随机数取余区间长度,再加上下限放进数组
sort(a, a + n ); //排序,a[0]~a[n-1]
int test = ulrand() % (MAX-MIN + 1) + MIN; //产生一个随机的x
int ans = bin_search(a,n,test);
int pos = upper_bound(a,a+n,test)-a;
//比较bin_search()和lower_bound()的输出是否一致:
if(ans == pos) cout << "!"; //正确
else { cout << "wrong"; break;} //有错,退出
}
}

笔记:通过lower_bount()函数的证明,确定了程序里的bin_search()函数的正确性。bin_search()函数通过 mid = left + (right – left) / 2 来实现后继的二分法

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注