三分嵌套
#include<bits/stdc++.h>
#define eps 1E-10
using namespace std;
struct node
{
double x,y;
} p1,p2,p3,p4;
int p,q,r;
double dist(node a,node b,int speed)
{
return sqrt(1.0*(a.x-b.x)*(a.x-b.x)+1.0*(a.y-b.y)*(a.y-b.y))/speed; //用勾股定理求斜边,线段/速度=时间
}
double solve(node Q)
{
node low=p3,high=p4; //low=C ,hogh=D
node mid,midmid; //中间值,嵌套中间值
double sum1=-1,sum2=0; //精确到(eps)位就跳出循环
while(fabs(sum2-sum1)>eps) //绝对值的比较,因为他不是单调的。
{
mid.x=(low.x+high.x)/2; //mid找到CD线段的中点
mid.y=(low.y+high.y)/2;
midmid.x=(high.x+mid.x)/2; //midmid定位D点和mid的中点
midmid.y=(high.y+mid.y)/2;
sum1=dist(Q,mid,r)+dist(mid,p4,q); //确定走完Z和Y所花的时间G(Y) = Z / R + Y / Q(局部变量)
//cout<<dist(Q,mid,r)<<endl;
//cout<<dist(mid,p4,q)<<endl;
sum2=dist(Q,midmid,r)+dist(p4,midmid,q);
//cout<<mid.x<<" "<<mid.y<<endl;
//cout<<midmid.x<<" "<<midmid.y<<endl;
//cout<<sum1<<" "<<sum2<<endl;
if(sum1<sum2) //更新三分的右端点
high=midmid;
else
low=mid;
}
return dist(Q,mid,r)+dist(mid,p4,q);
}
int main()
{
int T;
scanf("%d",&T);
{
while(T--)
{
scanf("%lf%lf%lf%lf",&p1.x,&p1.y,&p2.x,&p2.y);
scanf("%lf%lf%lf%lf",&p3.x,&p3.y,&p4.x,&p4.y);
scanf("%d%d%d",&p,&q,&r);
node low=p1,high=p2,mid,midmid; //low=A ,high=B ,中间值,嵌套中间值
double sum1=-1.0,sum2=0; //定义两个中间值
while(fabs(sum2-sum1)>eps) //精确到(eps)位就跳出循环
{
mid.x=(low.x+high.x)/2; //mid找到AB线段的中点
mid.y=(low.y+high.y)/2;
midmid.x=(high.x+mid.x)/2; //midmid定位B点和mid的中点
midmid.y=(high.y+mid.y)/2;
sum1=dist(p1,mid,p)+solve(mid); //确定在AB线段上花的时间F(X) = X / P(局部变量)
sum2=dist(p1,midmid,p)+solve(midmid);
if(sum1<sum2) //更新三分的右端点
high=midmid;
else
low=mid;
}
//cout<<sum1;
printf("%.2lf\n",sum1);
}
}
return 0;
}
笔记:两个端点肯定是直线距离最短,先确定下AB线段的mid点,再三分CD线段的mid点,直到三分到小于eps后,又将外层的AB线段三分一次,又又重新三分CD线段,直到三分到题目要求的精度
版权声明:
本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。本文链接:https://blog.csdn.net/became_a_wolf/article/details/51284492